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Context: Internet of Things

Internet of Things (IoT)
Wide range of application
Fast growing market
Rely on sensors, depending on their applications
Collect and share data
Manipulation of sensitive data
Increasingly vulnerable to multiple threats

IoT Applications

Smart IndustrySmart Health

Smart Car Smart City

Smart Agriculture Smart Home
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Figure 1: Number of IoT devices worldwide from 2022 to
2033 (from [1])
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Context: IoT Under Threats
Threats

Network threats: Man-In-The-Middle [2], jamming [3], DoS, etc
Software threats: memory overflow attacks [4], code execution, SQL injection, etc
Hardware threats: Reverse Engineering, Side-Channel Attacks [5], Fault Injection Attacks [6]

0 5 10 15 20 25 30
Percentage (%)

Overflow

Denial of Service

Code Execution

Gain Privilege

Memory Corruption

Information Leak

Others

Bypass a Restriction or Similar

Execute Code

Obtain Information

SQL Injection

Ca
te

go
rie

s

28.25%

27.20%

13.62%

12.35%

9.40%

3.48%

2.56%

2.03%

0.88%

0.19%

0.05%

Figure 2: Data from BitDefender [7]
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Software threats: Dynamic Information Flow Tracking

Security mechanism
Protection against software attacks [8] (e.g.: buffer overflow, format string, SQL injections)
Follow a security policy

William PENSEC (Postdoctorate researcher - LabHC) PhD Defense - Lorient – July 09, 2025 5 / 59



Software threats: Dynamic Information Flow Tracking

Three steps
Tag initialisation
Tag propagation
Tag check

D1

D2

D3

Trusted Untrusted
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Software threats: Dynamic Information Flow Tracking

Three steps
Tag initialisation
Tag propagation
Tag check

D1

D2

D3

D4

D5

Trusted Untrusted
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Software threats: Dynamic Information Flow Tracking

Hardware DIFT: off-core [9], off-loading
core, in-core

Advantage: no internal hardware modifi-
cation to the main core.

Disadvantage: needs support from the
OS for the synchronization between data
and tags.

Main
Core

L1 Cache

Tag
Pipeline

Tag Cache

DIFT Coprocessor

L2 Cache T

DRAM T

Figure 3: Representation of a Hardware Off-Core DIFT
(inspired by [9])
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Software threats: Dynamic Information Flow Tracking

Hardware DIFT: off-core, off-loading
core [10], in-core

Advantage: hardware does not need to
know DIFT tags and policies, and no syn-
chronization is needed.

Disadvantage: requires a multicore CPU,
reducing the number of cores available and
increase the power consumption.

Core 1 (App)

Capture

Core 2 (DIFT)

Analysis

L1 Cache L1 Cache

L2 Cache

Log buffer

DRAM

compress decompress

Figure 4: Representation of a Hardware Off-Loading DIFT
(inspired by [9])
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Software threats: Dynamic Information Flow Tracking

Hardware DIFT: off-core, off-loading
core, in-core [11]

Advantage: no multicore CPU and no
synchronization are needed. Very low per-
formances overhead.

Disadvantage: highly invasive modifica-
tions of internal hardware for tags compu-
tations and storing.

Decode
Register
File

ALU

Security
Decode

Tag
Register
File

Tag ALU

I-Cache T D-Cache T

L2 Cache T

DRAM T

Figure 5: Representation of a Hardware In-Core DIFT
(inspired by [9])
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Software and Hardware threats

DIFTs can protect efficiently a system against software attacks
What would happen if the DIFT were disturbed?
Considering a tag, what happens if a tag is modified?
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Hardware threats: Fault Injection Attacks

Fault Injection Attacks (FIA): involve intro-
ducing on purpose one or more fault(s) into a
system to disturb its behaviour and identify po-
tential vulnerabilities.
Several ways of injecting faults
The precision may vary depending on the cate-
gory used
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Motivations

Numerous studies to show vulnerabilities into critical systems

Power supply : manipulations to control the program counter on ARM [12];
EM Fault Injection (EMFI) : to recover an AES key by targeting the cache hierarchy and the
MMU [13];
Laser Fault Injection (LFI) : allow the replay of instructions on a 32-bit microcontroller [14].
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Numerous studies to show vulnerabilities into critical systems

Power supply : manipulations to control the program counter on ARM [12];
EM Fault Injection (EMFI) : to recover an AES key by targeting the cache hierarchy and the
MMU [13];
Laser Fault Injection (LFI) : allow the replay of instructions on a 32-bit microcontroller [14].

· No previous studies have shown the vulnerabilities of DIFT against FIA. ¶
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Research challenge

How can we maintain maximum protection against software attacks in the
presence of physical attacks?
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Objectives of this PhD Thesis

▶ Provide a robust security mechanism against software and hardware threats;
▶ Propose lightweight countermeasures against FIA;
▶ Take into account constraints, such as efficiency, area, and performance overhead.
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Outline

I. D-RI5CY – Vulnerability
Assessment

II. Fault Injection Simulation for
Security Assessment

III. Solutions to Protect against
FIAs

IV. Experimental results

V. Conclusion and Perspectives
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I. D-RI5CY – Vulnerability Assessment
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D-RI5CY — origins

DIFT design [15] made by researchers at Columbia University (USA) with Politecnico di Torino
(Italy)
Based on the 32-bit RISC-V processor: RI5CY (Pulp Platform)
Open source1

DIFT considering 1-bit tag data path
Flexible security policy that can be modified at runtime

PULP
Parallel Ultra Low Power

P

P

1https://github.com/sld-columbia/riscv-dift
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D-RI5CY — architecture
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Figure 6: Architecture of the D-RI5CY.
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Vulnerability Assessment — Why?

We do a vulnerability assessment in order to:
▶ check if this DIFT is vulnerable against FIA,
▶ determine the spatial and temporal locations of vulnerabilities.

Presented at Sensors S&P 2023 [16].

William PENSEC (Postdoctorate researcher - LabHC) PhD Defense - Lorient – July 09, 2025 19 / 59



Vulnerability Assessment — Threat model

Threat model
We consider an attacker able to:

perform a physical attack to defeat the DIFT mechanism and realise a software attack,
inject faults in DIFT-related registers:
▶ bit set,
▶ bit reset,
▶ bit-flip.

Fault model at bit level

Methodology

Analysis of 3 use cases: buffer overflow attack, format string attack, and compare/compute
We do a temporal, and logical analysis of the tag propagation
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Case: Buffer overflow

The attacker exploits a buffer overflow to access the return address register (RA).

PC T
A T

B T

C T

D T

E T

0x6fc T

T

T

T

T

T

@RA: 0x186c T

Stack Memory

Source buffer

Destination buffer

The source buffer is
initialised, the desti-
nation buffer is empty
and the return address
(@RA) is trusted.

(a) Initialisation

PC T
A T

B T

C T

D T

E T

0x6fc T

A T

B T

C T

T

T

@RA: 0x186c T

Stack Memory

The function memcpy
is called, and the des-
tination buffer is filled.
Memory tags lose their
integrity.

(b) Copy of the source buffer into the destination buffer

As the data in the source buffer is manipulated by the user, it is marked as untrusted .
Thanks to the DIFT, the tags associated with the source buffer data overwrite the memory tags.
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Case: Buffer overflow

PC T
A T

B T

C T

D T

E T

0x6fc T

A T

B T

C T

D T

E T

@RA: 0x6fc T

Stack Memory

Buffer overflow occurs,
values are overwritten.
@RA is compromised
by overwriting it with
the address of the func-
tion shellcode

(a) An overflow occurs, the RA register is overwritten

PC T

A T

B T

C T

D T

E T

@RA: 0x6fc T

Stack Memory

@RA

@RA is loaded into PC
along with its tag. The
PC loses its integrity.

(b) Corrupted RA register is loaded into the PC

Thanks to the DIFT, the tags associated with the source buffer data overwrite the RA register tag.
When the function ends, the corrupted register RA is loaded into PC using a jalr instruction.
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Case: Buffer overflow

PC T

A T

B T

C T

D T

E T

@RA: 0x6fc T

Stack Memory

Instruction shellcode is
fetched, its tag is sent
in parallel into the
pipeline.

Figure 9: PC address instruction is fetched

The PC has been overwritten, it is now untrusted.
The PC address is fetched to access the next address.
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Temporal analysis of the tag propagation
Cycle 3430

Decode jalr to shellcode

Register File Tag

ID stage

IF stage

Fetch : 0xc34: addi sp, sp, -128
Decode : 0xc30: jalr zero,ra,0
Execute : 0xc2c: addi sp, sp, 128
WB : 0xc28: lw s0,120(sp)

Cycle 3431

Fetch 1st instruction shellcode

IF stage

Fetch : 0x6fc: addi sp, sp, -16
Decode : 0xc30: jalr zero,x1,0
Execute :
WB : 0xc2c: addi sp, sp, 128

Cycle 3432

Fetch 2nd instruction shellcode
Decode 1st instruction shellcode

Tag Check Register

ID stage

Fetch : 0x700: sw ra,12(sp)
Decode : 0x6fc: addi sp, sp, -16
Execute :
WB :

rf reg[1]

pc if o tag

pc id o tag tcr q[21]

Exception handling

Figure 10: Temporal analysis of tags propagation in a Buffer Overflow attack
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Logical analysis of the tag propagation

T
a
g
P
ro
p
a
g
a
tio

n

Tag Checking

ID Stage

illegal insn dec dift

5

IF Stage

pc id o tag

CSR

0x701 : tcr q[21]

4
rst n

IF Stage

if valid o

IF Stage

pc if o tag

3

rst n

ID Stage

pc set o tag

2 ID Stage

pc mux o

1 Decoder

jump target mux sel o

IF Stage

instr rdata id o[6:0]

IF Stage

if valid o

Controller

jr stall o

Controller

jump done q

Controller

jump in dec i

IF Stage

instr valid id o

IF Stage

if valid o

ID Stage

branch in ex o

Controller

ctrl fsm cs

Reg File Tag

rf reg[1]

Figure 11: Logical analysis of tags propagation in a Buffer Overflow attack
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Experimental Setup — Simulation fault injections campaign

Logical fault injection simulation is used for preliminary evaluations
▶ faults are injected in the HDL code at cycle accurate and bit accurate level
▶ a set of 55 DIFT-related registers are targeted
▶ a reference simulation is done without fault
▶ results are classed in four groups

• crash: reference cycle count exceeded,
• silent: current faulted simulation is the same as the reference simulation
• delay: illegal instruction is delayed
• success: DIFT has been bypassed

Simulations with QuestaSim 10.6e.
FISSA (presented later) is used in order to automate our injection cam-
paigns
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Buffer overflow

Table 1: End of simulation status

Crash NSTR Delay Success Total

Buffer overflow 0 1380 20 24 (1.69%) 1422

Table 2: Buffer overflow : Register sensitivity as determined by fault model and simulation time

Cycle 3428 Cycle 3429 Cycle 3430 Cycle 3431 Cycle 3432

Bit
reset

Bit
set

Bit
flip

Bit
reset

Bit
set

Bit
flip

Bit
reset

Bit
set

Bit
flip

Bit
reset

Bit
set

Bit
flip

Bit
reset

Bit
set

Bit
flip

pc_if_o_tag ✓ ✓
memory_set_o_tag ✓ ✓
rf_reg[1] ✓ ✓
tcr_q ✓ ✓ ✓ ✓ ✓
tcr_q[21] ✓ ✓ ✓ ✓ ✓
tpr_q ✓ ✓ ✓ ✓
tpr_q[12] ✓ ✓
tpr_q[15] ✓ ✓
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Summary

▶ 4266 simulations have been performed,
▶ 95 successes (2.23%).
▶ This campaign showed 43 highly sensitive registers on 55

DIFT-related registers
▶ We have shown that the D-RI5CY DIFT is vulnerable to FIA
▶ Propagation of faults is facilitated by paths fully made of AND gates
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II. Fault Injection Simulation for Security
Assessment
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Fault Injection Simulation for Security Assessment (FISSA)

Presentation
Open-Source tool [17].
Allows the circuit designer to analyse throughout the design cycle the sensibility against FIA.
Integrated around an HDL Simulator (Questasim).
The generated results can help to find vulnerabilities during the design phase.
FISSA enables the principles of Security by Design.
Presented at DSD 2024 [18].
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FISSA — Software Architecture

Config
file

(.json)

Targets
(.yaml)

TCL
generator

TCL
Scripts

HDL
Simulator

Memory
Init

(.mem)

HDL
files

(.sv, .v)

Log
files

(.json)
Analyser

Heatmap
(.pdf)

LATEX
Tables
(.tex)

Figure 12: FISSA Software Architecture
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III. Solutions to Protect against FIAs
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Introduction

Protections
Focusing on lightweight hardware countermeasures:
▶ Hardware redundancy: duplication, or triplication, of the circuit to compare the results obtained to

check for any difference;
▶ Temporal redundancy: repeating operations in reverse to compare the result with the initial value;
▶ Instruction replay: executing multiple times the same instruction or block of instructions;
▶ Obfuscation: addition of dummy cycles, or shuffle the data;
▶ Information redundancy: adding additional data to the information to detect or correct the initial

value, such as simple parity code, Hamming Code, BCH code, or Reed-Solomon.
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Countermeasures

Protections
Focusing on information redundancy codes for IoT devices:
▶ Simple parity
▶ Hamming Code
▶ Hamming Code with an additional bit (SECDED)

Only adds a few bits to detect and correct ⇒ small overhead on area
Implementations of Hamming Code and Simple parity have been presented at ISVLSI 2024 [19].
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Detection of single-bit errors — Simple Parity

Often used for error detection.
Add an extra bit for parity computation.
Can only detect one error without correction.

d6 d5 d4 d3 d2 d1 d0 p0

Parity bit

Figure 13: Simple parity codeword
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Detection and correction of single-bit errors — Hamming Code

Linear error-correcting codes, invented by Richard W. Hamming [20].
Mostly used in digital communication and data storage systems.
Detect and correct single-bit error.
Redundancy bits are placed in power of 2 positions.

r0 = d0 ⊕ d1 ⊕ d3 ⊕ d4 ⊕ d6

r1 = d0 ⊕ d2 ⊕ d3 ⊕ d5 ⊕ d6

r2 = d1 ⊕ d2 ⊕ d3

r3 = d4 ⊕ d5 ⊕ d6

(1)

d6 d5 d4 d3 d2 d1 d0r3 r2 r1 r0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

Redundancy bits

Figure 14: Hamming codeword
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Detection of two-bit errors and correction of single-bit errors — SECDED

Based on Hamming Code.
Detect two-bit error and correct single-bit error.
An additional bit is added: general parity bit

r0 = d0 ⊕ d1 ⊕ d3 ⊕ d4 ⊕ d6

r1 = d0 ⊕ d2 ⊕ d3 ⊕ d5 ⊕ d6

r2 = d1 ⊕ d2 ⊕ d3

r3 = d4 ⊕ d5 ⊕ d6

gp0 =
6⊕

i=0
di ⊕

3⊕
j=0

rj

(2)

d6 d5 d4 d3 d2 d1 d0r3 r2 r1 r0 gp0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

Redundancy bits General Parity

Figure 15: SECDED codeword
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Implementation — One register for one encoder

input

Encoder

Register

Redundancy bits

General Parity bit

Decoder

n

n

m m

1 1

1
error

detected

n

outputcorrected

Figure 16: Implementation of a protection for one register
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Implementation — Multiple registers for one encoder

inputn−1

inputx

input1

input0

Encoder

r0

r1

. . .

rn−1

Redundancy bits

General Parity bit

Decoder

a

b

c

d

m

m

1

1

d

c

b

a

errordetected

outputr0corrected

outputr1corrected

outputrxcorrected

outputrn−1corrected

outputr0corrected

outputr1corrected

outputrxcorrected

outputrn−1corrected

Figure 17: Implementation of a protection for multiple registers
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Implementation — Special case for Register File tag

Tag
Register
Interface

adata

aaddr

awe

bdata

baddr

bwe

Encoder

r0

r1

. . .

rn−1

Redundancy bits

General Parity bit

Decoder

outputcorrected

adata

bdata

m m

1 1

error

error

m

. . .

outputacorrected

outputbcorrected

outputccorrected

. . .

Figure 18: Special implementation for the Register File Tag
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Implementation — One register on multiple encoders

input

2
Encoder

E0

Encoder

E1

Redundancy Bits

RB0

Redundancy Bits

RB1

General Parity

GP0

General Parity

GP1

Decoder

D0

Decoder

D1

R0

Outputcorrected

Error

Outputcorrected

Error

Figure 19: Implementation of a protection for one register split
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Implemented strategies — Evaluation of Group Composition

Different implementation strategies can be applied depending on protection requirements.
The protection efficiency would vary
We want the best protection at the lowest cost possible against different fault models
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Implemented strategies — Group composition

Table 3: Grouping composition and objectives of implemented strategies

Grouping strategy Objective

Strategy 1 Minimisation of groups Minimisation of the area overhead
Strategy 2 Protection per stage One protection for each 7 main stages
Strategy 3 Protection per register Each register is protected individually

Strategy 4 Protection per register with
CSR splitting

Strategy 3 + Split the CSRs registers by group of
operations

Strategy 5 Coupling split registers Split each register and couple each bit to another
register
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Implemented strategies — details
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Figure 20: Representation of the fifth strategy
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IV. Experimental results
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Experimental setup

Use of FISSA for FIA campaigns
More complex fault models: multi-bit faults or multi single-bit faults
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Fault model

DIFT-related registers + protection-related registers
Single bit-flip in two registers at two distinct clock cycles ⇒ 1 bit faulted per clock cycle

Single bit-flip in two registers at a given clock cycle ⇒ 2 bits faulted per clock cycle

Multi-bit faults in one register at a given clock cycle ⇒ up to 6 bits faulted per clock cycle (registers from 1 to 10

bits only)

Multi-bit faults in two registers at a given clock cycle ⇒ up to 11 bits faulted per clock cycle (registers from 1 to

10 bits only)
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FPGA implementation results

Table 4: FPGA implementation results2 — Vivado 2023.2

Protection Number of LUTs Number of FFs Maximum frequency
D-RI5CY 6911 (0%) 2335 (0%) 47.6 MHz (0%)

Simple parity 7011 (+1.45%) 2337 (+0.09%) 47.6 MHz (0%)

Hamming Code Strategy 1 7283 (+5.38%) 2361 (+1.11%) 47.4 MHz (-0.36%)

Hamming Code Strategy 2 7369 (+6.63%) 2363 (+1.2%) 46.9 MHz (-1.43%)

Hamming Code Strategy 3 7251 (+4.92%) 2361 (+1.11%) 46.8 MHz (-1.67%)

Hamming Code Strategy 4 7203 (+4.23%) 2371 (+1.54%) 47.6 MHz (0%)

Hamming Code Strategy 5 7182 (+3.92%) 2411 (+3.25%) 47.3 MHz (-0.57%)

SECDED Strategy 1 7428 (+7.48%) 2366 (+1.33%) 47.2 MHz (-0.95%)

SECDED Strategy 2 7433 (+7.55%) 2366 (+1.41%) 47.2 MHz (-0.95%)

SECDED Strategy 3 7324 (+5.98%) 2368 (+1.28%) 47.5 MHz (-0.24%)

SECDED Strategy 4 7255 (+4.98%) 2365 (+1.93%) 48.3 MHz (+1.43%)

SECDED Strategy 5 7228 (+4.59%) 2428 (+3.98%) 48.3 MHz (+1.43%)

2Zedboard Xilinx Zynq-7000
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SECDED Strategy 4 7255 (+4.98%) 2365 (+1.93%) 48.3 MHz (+1.43%)

SECDED Strategy 5 7228 (+4.59%) 2428 (+3.98%) 48.3 MHz (+1.43%)

· No major impact on area and performances ¶

2Zedboard Xilinx Zynq-7000
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Obtained results from the first considered fault model

Table 5: Logical fault injection simulation campaigns results for single bit-flip in two registers at a given clock cycle

Crash Silent Delay Detection Detection &
Correction

Double Error
Detection Success Total Execution

time (h:min)

Buffer
Overflow

No protection 0 45 097 1503 – – – 1406 (2.93%) 48 006 13:43
Simple parity 0 10 551 134 40 952 – – 239 (0.46%) 51 876 14:07
Hamming 1 0 0 575 – 67 829 – 452 (0.66%) 68 856 19:48
Hamming 2 0 0 297 – 72 867 – 312 (0.42%) 73 476 97:16
Hamming 3 0 0 263 – 108 326 – 281 (0.26%) 108 870 30:00
Hamming 4 0 0 57 – 155 112 – 99 (0.06%) 155 268 46:30
Hamming 5 0 0 55 – 173 367 – 98 (0.06%) 173 520 53:00
SECDED 1 0 2436 0 – 59 424 11 616 0 73 476 20:56
SECDED 2 0 0 0 – 69 354 10 842 0 80 196 21:49
SECDED 3 0 0 0 – 128 376 9654 0 138 030 40:14
SECDED 4 0 0 0 – 204 060 7410 0 211 470 64:02
SECDED 5 0 12 096 0 – 214 722 7542 0 234 360 69:44
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Obtained results from the second considered fault model

Table 6: Logical fault injection simulation campaigns results for exhaustive multi-bits faults in two registers at a given
clock cycle

Crash Silent Delay Detection Detection &
Correction

Double Error
Detection Success Total Execution

time (h:min)

Buffer
Overflow

No protection 0 67 072 926 – – – 450 (0.66%) 68 448 11:11
Simple parity 0 24 622 8 53 359 – – 59 (0.08%) 78 048 25:00
Hamming 1 0 294 464 6273 – – – 3103 (1.02%) 303 840 99:36
Hamming 2 0 0 3992 – 319 588 – 4356 (1.33%) 327 936 131:12
Hamming 3 0 0 4557 – 436 187 – 4408 (0.99%) 445 152 121:20
Hamming 4 0 0 5446 – 590 953 – 5329 (0.89%) 601 728 167:00
Hamming 5 0 0 5987 – 714 873 – 5860 (0.81%) 726 720 210:31
SECDED 1 0 0 1911 – 150 791 170 575 723 (0.22%) 324 000 86:59
SECDED 2 0 0 1186 – 170 805 184 761 584 (0.16%) 357 336 94:04
SECDED 3 0 0 1230 – 300 260 263 665 669 (0.12%) 565 824 161:30
SECDED 4 0 0 18 – 457 498 368 959 61 (0.0074%) 826 536 244:48
SECDED 5 0 0 39 – 576 992 401 407 66 (0.0067%) 978 504 284:45
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Generated heatmaps from FISSA
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Figure 21: Unprotected version: multi-bits faults in two
registers at a given clock cycle → 450 successes
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Figure 22: SECDED 5 protected version: 66 successes
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V. Conclusion and Perspectives
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Conclusion

How can we maintain maximum protection against software attacks in the presence of physical attacks?

Presented:
▶ Vulnerability assessment of a DIFT mechanism against FIA

▶ We have shown that the DIFT mechanism is vulnerable
▶ Take into account different fault models adapted from simple to

more complex ones to defeat the DIFT and its protections
▶ Open-Source tool to help find vulnerabilities during the conceptual

phase ⇒ enables the concept of Security by Design
▶ Proposition of 3 lightweight countermeasures:
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Conclusion

How can we maintain maximum protection against software attacks in the presence of physical attacks?

Presented:
▶ Vulnerability assessment of a DIFT mechanism against FIA
▶ Open-Source tool to help find vulnerabilities during the conceptual

phase ⇒ enables the concept of Security by Design
▶ Proposition of 3 lightweight countermeasures:

▶ based on parity codes
▶ area overhead smaller than 8%
▶ no impact on performances
▶ good efficiency in terms of security (99.99% of detection/correction

with complex fault models – up to 11 faults injected)

William PENSEC (Postdoctorate researcher - LabHC) PhD Defense - Lorient – July 09, 2025 53 / 59



Perspectives

Short terms
▶ Propose more robust countermeasures to correct multiple faults

▶ Evaluation of BCH codes, RK or AMD codes, or triplication
▶ Evaluation of these countermeasures in terms of area and performances overhead compared to our

actual proposed solutions
▶ Further development of FISSA

▶ Better integration in the design workflow
▶ More fault models
▶ More configurability, for example, automatisation for finding targets
▶ Adding a graphical user interface to provide a better experience
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Perspectives

Long terms
▶ Conduct real-world FIA

▶ Evaluation against clock glitches (ChipWhisperer [21]), EMFI (ChipShouter [22]), laser (ALPhANOV
laser [23]) for examples.

▶ Extend the assessment of more complex DIFT
▶ Evaluation of DIFT with more bits in the tag (e.g: Raksha [11] : 4-bit tags)
▶ Evaluation of our proposed protections for these DIFT and comparison with other protections
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VI. Post-doctorate
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Few words - Post-doctorate

Title: Security Evaluation of Neural Network implementations against Fault Injection Attacks

Collaboration with: Vincent Grosso, Brice Colombier, Cédric Killian

Objective: Cloning a trained model on a dataset (MNIST, Iris, . . . ) thanks to fault injections in the
flash memory to recover the weights of the original model.
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Few words - Post-doctorate

Preliminary results

Work in Progress – started in October 2024
Successful cloning on small random models and on models trained with the iris dataset.
3 and 4 layer models only if negative weights are applied in the hidden layers, otherwise it should
work for all sizes.
Biggest issue: negative weights inside hidden layers
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Software threats: Dynamic Information Flow Tracking

Static or Dynamic
Software, Hardware or Hybrid

Information
Flow Tracking

Static Dynamic

Software Hardware Hybrid

Figure 23: Taxonomy of IFTs
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Tag Propagation Register

Table 7: Tag Propagation Register configuration

Load/Store Enable Load/Store Mode Logical Mode Comparison Mode Shift Mode Jump Mode Branch Mode Arith Mode
Bit index 17 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Policy V1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0
Policy V2 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0

A Mode field for each class of instructions, which specifies how to propagate the tags of the input
operands to the output operand tag.
▶ the output tag keeps its old value (00);
▶ the output tag is set to one, if both the input tags are set to one (01);
▶ the output tag is set to one, if at least one input tag is set to one (10);
▶ the output tag is set to zero (11).

The three bits in the L/S enable field allow the policy to enable the source, source-address, and
destination-address tags, respectively
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Tag Check Register

Table 8: Tag Check Register configuration

Execute Check Load/Store Check Logical Check Comparison Check Shift Check Jump Check Branch Check Arith Check
Bit index 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Policy V1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Policy V2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

The tag-check rules restrict the operations that may be performed on tagged data. If the check bit
for an operand tag is set to one and the corresponding tag is equal to one, an exception is raised.
▶ For all the classes except Load/Store, there are three tags to consider: first input, second input, and

output tags
▶ For the Load/Store class there are four tags to take into account: source-address, source, destination-

address, and destination tags
▶ the additional Execute Check field is associated with the program counter and specifies whether to raise

a security exception when the program-counter tag is set to one
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Case 1: Buffer Overflow

Table 9: Logical fault injection simulation campaigns results for exhaustive multi-bits faults in one register at a given clock
cycle

Crash Silent Delay Detection Detection &
Correction

Double Error
Detection Success Total Execution

time (h:min)

Buffer
Overflow

No protection 0 927 6 – – – 3 (0.32%) 936 00:08
Simple parity 0 498 0 498 – – 0 996 00:14
Hamming 1 0 0 20 – 1962 – 10 (0.50%) 1992 00:28
Hamming 2 0 0 12 – 2038 – 14 (0.68%) 2064 00:32
Hamming 3 0 0 12 – 2352 – 12 (0.51%) 2376 00:28
Hamming 4 0 0 12 – 2712 – 12 (0.44%) 2736 00:35
Hamming 5 0 0 12 – 2976 – 12 (0.40%) 3000 00:45
SECDED 1 0 0 8 – 1393 648 3 (0.15%) 2052 00:30
SECDED 2 0 0 5 – 1475 666 2 (0.09%) 2148 00:30
SECDED 3 0 0 4 – 1932 726 2 (0.08%) 2664 00:40
SECDED 4 0 0 0 – 2370 822 0 3192 00:45
SECDED 5 0 0 0 – 2670 798 0 3468 00:55
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Case 2: WU-FTPd

The vulnerability is the use of an unchecked user input as the format string parameter in functions
that perform formatting, e.g. printf()
An attacker can use the format tokens, to write into arbitrary locations of memory, e.g. the return
address of the function.

1 v o i d echo ( ) {
2 i n t a ;
3 r e g i s t e r i n t i asm ( " x8 " ) ;
4 a = i ;
5 p r i n t f ( "%224u%n%35u%n%253u%n%n" , 1 , ( i n t ∗) ( a−4) , 1 , ( i n t ∗) ( a−3) , 1 , ( i n t ∗) ( a−2) , ( i n t ∗) ( a−1) ) ;
6 }
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Case 2: WU-FTPd
Cycle 52482

Decode store of 0E0 in (a-4)

Tag Check Register

Register File

ID stage

Fetch : 0x118c: nop
Decode : 0x1188: sw a4,0(a5)
Execute : 0x1184: lw a4,-20(a3)
WB : 0x1180: addi a3,s0,-16

Cycle 52483

Fetch : 0x118c: lw s0,44(sp)
Decode : 0x1188: sw a4,0(a5)
Execute :
WB : 0x1184: lw a4,-20(a3)

Cycle 52484

Execute store in (a-4)

ID stage

Fetch : 0x1190: addi sp,sp,48
Decode : 0x118c: nop
Execute : 0x1188: sw a4,0(a5)
WB :

rf reg[15]

tcr q[20]

store dest addr ex o tag

check s1 o tag

Exception handling

Figure 24: Temporal analysis of the tags propagation in a format string attack
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Case 2: WU-FTPd

Tag Propagation

Tag Checking

Tag Checking

ID Stage

illegal insn dec dift

3

ID Stage

regfile we ex o

ID Stage

rst n

ID Stage

id valid o

ID Stage

data misaligned i

ID Stage

mult multicycle i

Decoder

regfile mem we o

Decoder

deassert we i

Decoder

regfile mem we

IF Stage

instr rdata id o[6:0]

IF Stage

if valid o

ID Stage

check s1 o tag

2

ID Stage

mult en

1

CSR

0x701 : tcr q[20]

Tag Check Logic

operand a i

11

. . .

ID Stage

use store ops ex o

ID Stage

is store

ID Stage

store dest addr ex o tag

10

9

ID Stage

alu op a mux sel

8

ID Stage

operand a fw mux sel

Register File Tag

rf reg[15]

7

. . .

ID Stage

regfile alu waddr ex o tag

6
ID Stage

alu operator o mode

. . .

54

ID Stage

alu operand b ex o tag

ID Stage

alu operand a ex o tag

OPCODE LOAD OPCODE STORE

OP A REGA OR FWD

SEL REGFILE

Figure 25: Logical analysis of the tags propagation in a format string attack
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Case 2: WU-FTPd

Table 10: Logical fault injection simulation campaigns results for single bit-flip in two registers at a given clock cycle

Crash Silent Delay Detection Detection &
Correction

Double Error
Detection Success Total Execution

time (h:min)

Format
String

No protection 0 55 589 5035 – – – 3384 (5.29%) 64 008 163:09
Simple parity 0 13 361 450 54 590 – – 767 (1.11%) 69 168 114:06
Hamming 1 0 0 1709 – 89 010 – 1089 (1.19%) 91 808 179:38
Hamming 2 0 0 982 – 96 182 – 804 (0.82%) 97 968 136:40
Hamming 3 0 0 659 – 143 883 – 618 (0.43%) 145 160 261:40
Hamming 4 0 0 379 – 206 423 – 222 (0.11%) 207 024 368:10
Hamming 5 0 0 391 – 230 758 – 211 (0.09%) 231 360 445:58
SECDED 1 0 0 0 – 82 480 15 488 0 97 968 233:28
SECDED 2 0 0 0 – 92 472 14 456 0 106 928 185:35
SECDED 3 0 0 0 – 171 168 12 872 0 184 040 317:20
SECDED 4 0 0 0 – 272 080 9880 0 281 960 462:58
SECDED 5 0 16 128 0 – 286 296 10 056 0 312 480 558:16
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Case 2: WU-FTPd

Table 11: Logical fault injection simulation campaigns results for exhaustive multi-bits faults in one register at a given
clock cycle

Crash Silent Delay Detection Detection &
Correction

Double Error
Detection Success Total Execution

time (h:min)

Format
String

No protection 0 1202 32 – – – 14 (1.12%) 1248 01:24
Simple parity 0 661 0 665 – – 2 (0.15%) 1328 02:12
Hamming 1 0 0 62 – 2565 – 29 (1.09%) 2656 04:24
Hamming 2 0 0 53 – 2666 – 33 (1.20%) 2752 03:36
Hamming 3 0 0 47 – 3090 – 31 (0.98%) 3168 03:55
Hamming 4 0 0 47 – 3570 – 31 (0.85%) 3648 04:25
Hamming 5 0 0 41 – 3930 – 29 (0.73%) 4000 05:18
SECDED 1 0 0 22 – 1832 864 18 (0.66%) 2736 03:30
SECDED 2 0 0 14 – 1938 894 18 (0.63%) 2864 03:48
SECDED 3 0 0 10 – 2560 968 14 (0.39%) 3552 04:42
SECDED 4 0 0 5 – 3146 1096 9 (0.21%) 4256 05:42
SECDED 5 0 0 4 – 3554 1064 2 (0.04%) 4624 06:30
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Case 2: WU-FTPd

Table 12: Logical fault injection simulation campaigns results for exhaustive multi-bits faults in two registers at a given
clock cycle

Crash Silent Delay Detection Detection &
Correction

Double Error
Detection Success Total Execution

time (h:min)

Format
String

No protection 0 84 419 4836 – – – 2009 (2.20%) 91 264 104:15
Simple parity 0 32 275 147 71 198 – – 444 (0.43%) 104 064 138:40
Hamming 1 0 0 20 050 – 375 836 – 9234 (2.28%) 405 120 902:08
Hamming 2 0 0 17 597 – 408 894 – 10 757 (2.46%) 437 248 774:40
Hamming 3 0 0 17 926 – 564 154 – 11 456 (1.93%) 593 536 1021:50
Hamming 4 0 0 20 986 – 767 604 – 13 714 (1.71%) 802 304 1418:24
Hamming 5 0 0 20 547 – 934 077 – 14 336 (1.48%) 968 960 1690:05
SECDED 1 0 0 5408 – 194 766 227 655 4171 (0.97%) 432 000 740:21
SECDED 2 0 0 3611 – 220 568 247 704 4565 (0.96%) 476 448 836:41
SECDED 3 0 0 3088 – 395 487 351 553 4304 (0.57%) 754 432 1305:36
SECDED 4 0 0 1939 – 604 649 491 945 3515 (0.32%) 1 102 048 1915:20
SECDED 5 0 0 1938 – 766 527 535 209 998 (0.08%) 1 304 672 2287:38
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Case 3: Compare/Compute

No software vulnerability
Used to cover the DIFT surface

1 i n t main ( ) {
2 i n t a , b = 5 , c ;
3 r e g i s t e r i n t r eg asm ( " x9 " ) ;
4 a = reg ;
5 asm v o l a t i l e ( " csrw 0x700 , t p r V a l u e " ) ;
6 asm v o l a t i l e ( " csrw 0x701 , t c r V a l u e " ) ;
7 asm v o l a t i l e ( "p . spsw x0 , 0(\%0) ; " : : " r " (&a ) ) ;
8 c = ( a > b ) ? ( a−b ) : ( a+b ) ;
9 // 42 c : b l e a4 , a5 ,448

10 // 430 : add i a5 , s0 ,−16
11 // 434 : lw a4 , −12( a5 )
12 // 438 : add i a3 , s0 ,−16
13 // 43 c : lw a5 , −4( a3 )
14 // 440 : sub a5 , a4 , a5
15 // 444 : j 45 c
16 // 448 : add i a5 , s0 ,−16
17 // 44 c : lw a4 , −12( a5 )
18 // 450 : add i a3 , s0 ,−16
19 // 454 : lw a5 , −4( a3 )
20 // 458 : add a5 , a4 , a5
21 // 45 c : sw a5 , −24( s0 )
22 r e t u r n EXIT_SUCCESS ;
23 }
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Case 3: Compare/Compute

Cycle 833

Decode a+b

Tag Check Register

Register File Tag

ID stage

Fetch : 0x45c: sw a5, -24(s0)
Decode : 0x458: add a5, a4, a5
Execute :
WB : 0x450: addi a3, s0, -16

Cycle 834

Fetch : 0x45c: sw a5, -24(s0)
Decode : 0x458: add a5, a4, a5
Execute :
WB :

Cycle 835

Execute a+b

EX stage

ID stage

Fetch : 0x460: li a5,0
Decode : 0x45c: sw a5, -24(s0)
Execute : 0x458: add a5, a4, a5
WB :

rf reg[14]

tcr q[0]

alu operand a ex o tag

check s1 o tag
alu operator o mode

check s2 o tag

alu operand b ex o tag

exception o tag

Exception handling

Figure 26: Temporal analysis of the tags propagation in a format string attack
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Case 3: Compare/Compute

Tag Propagation

Tag Checking

Tag Checking

ID Stage

illegal insn dec dift

3

ID Stage

regfile we ex o

ID Stage

rst n

ID Stage

id valid o

ID Stage

data misaligned i

ID Stage

mult multicycle i

Decoder

regfile mem we o

Decoder

deassert we i

Decoder

regfile mem we

IF Stage

instr rdata id o[6:0]

IF Stage

instr rdata id o[14:12]

IF Stage

if valid o

ID Stage

check s1 o tag

2

ID Stage

mult en

1

CSR

0x701 : tcr q[0]

Tag Check Logic

operand a i

11

. . .

ID Stage

use store ops ex o

ID Stage

is store

ID Stage

alu operand a ex o tag

10

9

ID Stage

alu op a mux sel

8

ID Stage

operand a fw mux sel

Register File Tag

rf reg[14]

7

. . .

ID Stage
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6
ID Stage
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. . .
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ID Stage

alu operand b ex o tag

ID Stage

alu operand a ex o tag

Figure 27: Logical analysis of the tags propagation in a format string attack
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Case 3: Compare/Compute

Table 13: Logical fault injection simulation campaigns results for single bit-flip in two registers at a given clock cycle

Crash Silent Delay Detection Detection &
Correction

Double Error
Detection Success Total Execution

time (h:min)

Compare
Compute

No protection 0 29 906 919 – – – 1179 (3.68%) 32 004 05:24
Simple parity 0 6697 202 27 678 – – 7 (0.02%) 34 584 04:48
Hamming 1 0 0 450 – 45 192 – 262 (0.57%) 45 904 09:21
Hamming 2 0 0 440 – 48 419 – 125 (0.26%) 48 984 08:47
Hamming 3 0 0 315 – 72 140 – 125 (0.17%) 72 580 13:53
Hamming 4 0 0 97 – 103 345 – 70 (0.07%) 103 512 22:23
Hamming 5 0 0 96 – 115 511 – 73 (0.06%) 115 680 23:48
SECDED 1 0 0 0 – 37 740 11 244 0 48 984 17:00
SECDED 2 0 0 0 – 46 236 7228 0 53 464 10:12
SECDED 3 0 0 0 – 85 584 6436 0 92 020 18:25
SECDED 4 0 0 0 – 136 040 4940 0 140 980 28:37
SECDED 5 0 0 0 – 151 212 5028 0 156 240 32:52
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Case 3: Compare/Compute

Table 14: Logical fault injection simulation campaigns results for exhaustive multi-bits faults in one register at a given
clock cycle

Crash Silent Delay Detection Detection &
Correction

Double Error
Detection Success Total Execution

time (h:min)

Compare
Compute

No protection 0 616 2 – – – 6 (0.96%) 624 00:04
Simple parity 0 330 0 334 – – 0 664 00:04
Hamming 1 0 0 9 – 1311 – 8 (0.60%) 1328 00:09
Hamming 2 0 0 15 – 1356 – 5 (0.36%) 1376 00:09
Hamming 3 0 0 12 – 1567 – 5 (0.32%) 1584 00:11
Hamming 4 0 0 12 – 1807 – 5 (0.27%) 1824 00:13
Hamming 5 0 0 12 – 1983 – 5 (0.25%) 2000 00:14
SECDED 1 0 0 2 – 888 476 2 (0.15%) 1368 00:09
SECDED 2 0 0 6 – 977 449 0 1432 00:10
SECDED 3 0 0 2 – 1290 484 0 1776 00:12
SECDED 4 0 0 0 – 1580 548 0 2128 00:15
SECDED 5 0 0 0 – 1780 532 0 2312 00:16
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Case 3: Compare/Compute

Table 15: Logical fault injection simulation campaigns results for exhaustive multi-bits faults in two registers at a given
clock cycle

Crash Silent Delay Detection Detection &
Correction

Double Error
Detection Success Total Execution

time (h:min)

Compare
Compute

No protection 0 44 444 323 – – – 865 (1.90%) 45 632 05:36
Simple parity 0 16 033 53 35 943 – – 3 (0.01%) 52 032 08:05
Hamming 1 0 0 2912 – 196 958 – 2690 (1.33%) 202 560 34:17
Hamming 2 0 0 4677 – 211 969 – 1978 (0.90%) 218 624 37:24
Hamming 3 0 0 4377 – 290 302 – 2089 (0.70%) 296 768 53:50
Hamming 4 0 0 5282 – 393 423 – 2447 (0.61%) 401 152 74:31
Hamming 5 0 0 5829 – 475 987 – 2664 (0.55%) 484 480 94:21
SECDED 1 0 0 656 – 92 123 122 731 490 (0.23%) 216 000 35:42
SECDED 2 0 0 1452 – 112 110 124 659 3 (0.0013%) 238 224 43:38
SECDED 3 0 0 640 – 200 702 175 871 3 (0.0008%) 377 216 72:32
SECDED 4 0 0 68 – 304 920 246 033 3 (0.00054%) 551 024 109:22
SECDED 5 0 0 96 – 384 572 267 665 3 (0.00046%) 652 336 128:21
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Implemented strategies - details

Table 16: Summary of DIFT-related protected registers – taking SECDED

Number of
protected bits

Number of
redundancy bits

Number of
parity bits

Number of
bits

Strategy 1 107 25 5 157
Strategy 2 107 30 7 164
Strategy 3 107 64 24 215
Strategy 4 103 101 38 266
Strategy 5 102 114 39 280
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