
When in-core Dynamic Information Flow
Tracking faces fault injection attacks

Vianney Lapôtre, William Pensec, Guy Gogniat
CryptArchi 2023
June 13, 2023

mailto:vianney.lapotre@univ-ubs.fr


Table of ContentsIntroduction

▶ Introduction
▶ D-RI5CY processor
▶ Fault Injection Attacks against D-RI5CY
▶ Conclusions

1/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



Data security: principlesIntroduction

Principles
• Confidentiality
• Integrity
• Availability

Security Policy
• Which security property is expected on each information container (file, variable,register, etc.) ?
• What operations are allowed on each container ?

2/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



Threat modelIntroduction
• Software attacks: buffer overflow, ROP. . .

• Fault injection attacks

• Side-channel attacks not taken into account
3/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



Software security: Existing solutionsIntroduction
Security mechanisms

Detect, prevent or recover from a security attack
Preventive mechanisms

Enforce the security policy:
• Cryptographic mechanisms
• Isolation (e.g., Trustzone, SAM L11)
• Formal proof, etc.

Reactive mechanisms
Monitor the system and detect any security policy violation to recover
• Intrusion detection systems (e.g., Snort, OSSEC)

— Dynamic Information flow tracking (DIFT)

4/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



Dynamic Information Flow Tracking (DIFT)Introduction

Motivation
DIFT for security purposes : Integrity and Confidentiality

DIFT principle
• We attach labels called tags to containers and specify an information flow policy, i.e.relations between tags
• At runtime, we propagate tags to reflect information flows that occur and detect any
policy violation

5/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



Hardware-based DIFT (fine-grained)Introduction

Figure: Dedicated DIFT co-processor [3, 1] Figure: Dedicated CPU for DIFT [4]

Figure: In-core DIFT [2, 5]
6/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



Table of ContentsD-RI5CY processor

▶ Introduction
▶ D-RI5CY processor
▶ Fault Injection Attacks against D-RI5CY
▶ Conclusions

7/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



OverviewD-RI5CY processor

• Fork of the RI5CY processor [6]
— 4-stage in-order 32-bit RISC-V optimized for low-power embedded systems and IoTapplication— Fully supports the base integer instruction set (RV32I), compressed instructions (RV32C)and the multiplication instruction set extension (RV32M) of the RISC-V ISA. In addition,it implements a set of custom extensions (RV32XPulp)

• The D-RI5CY must be able to detect and stop various known memory-corruption
attacks; the protection must be flexible and extendable through software
programmable security policies to target future kinds of attacks; finally, the
protection must provide a transparent and fine-grain management of security with
no latency and small storage overhead

8/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



Block diagramD-RI5CY processor

CONTROLLER

IF/ID ID/EX EX/WB

PC T

Tag Check

Logic

Instruction

Memory

Instruction

Cache

Decoder

Exception

Controller

Register

File
T

Tag Update

Logic

ALU

CSR
TPR

TCR

MULT

DIV FPU

Tag

Propagation

Logic

LSU

Tag Check

Logic

Data

Memory
T

D-RI5CY
in-core

off-core

off-core

• In red and pink the DIFT components
9/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



Tag initializationD-RI5CY processor

• To initialize the security tags of user-supplied inputs to one, four new instructionshave been implemented
— p.set rd sets to one the security tag of the destination register rd;— p.spsb x0, offset(rt) sets to one the security tag of the memory byte at the address

rt + offset;— p.spsh x0, offset(rt) sets to one the security tags of the memory half-word at theaddress rt + offset;— p.spsw x0, offset(rt) sets to one the security tags of the memory word at the address
rt + offset.

10/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



Tag PropagationD-RI5CY processor

Figure: D-RI5CY Tag Propagation Register [5]
• A Mode field for each class of instructions which specifies how to propagate the tagsof the input operands to the output operand tag.

— the output tag keeps its old value (00);— the output tag is set to one, if both the input tags are set to one (01);— the output tag is set to one, if at least one input tag is set to one (10);— the output tag is set to zero (11).
• The three bits in the L/S enable field allow the policy to enable the source,source-address, and destination-address tags, respectively

11/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



Tag CheckingD-RI5CY processor

Figure: D-RI5CY Tag Check Register [5]

• The tag-check rules restrict the operations that may be performed on tagged data. Ifthe check bit for an operand tag is set to one and the corresponding tag is equal toone, an exception is raised.— For all the classes except Load/Store, there are three tags to consider: first input,second input, and output tags— For the Load/Store class there are four tags to take into account: source-address,source, destination-address, and destination tags— the additional Execute Check field is associated with the program counter and specifieswhether to raise a security exception when the program-counter tag is set to one
12/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



Table of ContentsFault Injection Attacks against D-RI5CY

▶ Introduction
▶ D-RI5CY processor
▶ Fault Injection Attacks against D-RI5CY
▶ Conclusions

13/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



Motivation and fault modelFault Injection Attacks against D-RI5CY

• Identify vulnerabilities of the D-RI5CY DIFT mechanism when considering FIA andpropose contermeasures
• We consider an attacker able to

— combine software and physical attacks to defeat the DIFT mechanism— inject faults in registers associated to the DIFT-related components
◦ set to 0, set to 1, or a bit-flip at a random position of the targeted register

• In this presentation, we consider 2 use cases: buffer overflow and Format stringattacks

14/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



Buffer overflow attackFault Injection Attacks against D-RI5CY
• The attacker exploits a buffer overflow to reach the return address (ra) register

illustration from [5]• Due to the DIFT mechanism, the tag associated with the buffer data overwrites the
ra register tag.

• Since the buffer data is manipulated by the user, it is tagged as not trusted.
• When returning from the called function, the corrupted ra register is loaded into PCvia a jalr instruction.

15/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



Tag propagation in a buffer overflow attackFault Injection Attacks against D-RI5CY
Cycle 1

Decode jalr to shellcode

Register File Tag

ID stage

IF stage

Fetch : 0xc34: addi sp, sp, -128
Decode : 0xc30: jalr zero,ra,0
Execute : 0xc2c: addi sp, sp,
128
WB : 0xc28: lw s0,120(sp)

Cycle 2

Fetch 1st instruction shellcode

IF stage

Fetch : 0x6fc: addi sp, sp, -16
Decode : 0xc30: jalr zero,x1,0
Execute :
WB : 0xc2c: addi sp, sp, 128

Cycle 3

Fetch 2nd instruction shellcode
Decode 1st instruction shellcode

ID stage

Fetch : 0x700: sw ra,12(sp)
Decode : 0x6fc: addi sp, sp, -16
Execute :
WB :

rf reg[1]

pc if o tag

pc id o tag

Exception handling

16/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



Tag propagation in a buffer overflow attack - logic viewFault Injection Attacks against D-RI5CY

ID Stage

illegal insn dec dift

5

IF Stage

pc id o tag

CSR

0x701 : tcr q[21]

4
rst n

IF Stage

if valid o

IF Stage

pc if o tag

3

rst n

ID Stage

pc set o tag

2 ID Stage

pc mux o

1 Decoder

jump target mux sel o

IF Stage

instr rdata id o[6:0]

IF Stage

if valid o

Controller

jr stall o

Controller

jump done q

Controller

jump in dec i

IF Stage

instr valid id o

IF Stage

if valid o

ID Stage

branch in ex o

Controller

ctrl fsm cs

Reg File Tag

rf reg[1]

17/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



Format string attackFault Injection Attacks against D-RI5CY

• The vulnerability is the use of an unchecked user input as the format stringparameter in functions that perform formatting, e.g. printf()
• An attacker can use the format tokens, to write into arbitrary locations of memory,e.g. the return address of the function.
• We consider the example of Format string attack available athttps://github.com/sld-columbia/riscv-dift/tree/master/pulpino apps dift/wu-ftpd

18/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |

https://github.com/sld-columbia/riscv-dift/tree/master/pulpino_apps_dift/wu-ftpd


Tag propagation in a Format string attackFault Injection Attacks against D-RI5CY
Cycle 1

Decode store of 0E0 in (a-4)

Register File Check Tag

ID stage

Fetch : 0x118c: nop
Decode : 0x1188: sw a4,0(a5)
Execute : 0x1184: lw a4,-
20(a3)
WB : 0x1180: addi a3,s0,-16

Cycle 2

Fetch : 0x118c: lw s0,44(sp)
Decode : 0x1188: sw a4,0(a5)
Execute :
WB : 0x1184: lw a4,-20(a3)

Cycle 3

Execute store in (a-4)

EX Stage

Tag Check Logic

EX Stage

ID stage

Fetch : 0x1190: addi sp,sp,48
Decode : 0x118c: nop
Execute : 0x1188: sw a4,0(a5)
WB :

regfile data ra id tag source s1 i tag

alu operand a ex o tag

check s1 tag

check a check s1 i tag

exception o

exception o tag

Exception handling

19/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



Tag propagation in a Format string attack - logic viewFault Injection Attacks against D-RI5CY

ID Stage

illegal insn dec dift

ID Stage

regfile we ex o

ID Stage

rst n

ID Stage

id valid o

ID Stage

data misaligned i

ID Stage

mult multicycle i

Decoder

regfile mem we o

Decoder

deassert we i

Decoder

regfile mem we

IF Stage

instr rdata id o[6:0]

IF Stage

if valid o

ID Stage

check s1 o tag

ID Stage

mult en

CSR

0x701 : tcr q[20]

Tag Check Logic

operand a i

ID Stage

use store ops ex o

ID Stage

is store

ID Stage

store dest addr ex o tag

ID Stage

alu op a mux sel

ID Stage

operand a fw mux sel

Register File Tag

rf reg[15]

OPCODE LOAD OPCODE STORE

OP A REGA OR FWD

SEL REGFILE

20/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



fault simulation campaignFault Injection Attacks against D-RI5CY

• Logical fault injection simulation is used for preliminary evaluations
— faults are injected in the HDL code at cycle accurate and bit accurate level— a set of 54 DIFT-related registers are targeted— a set of attack windows are determined based on the previous study— set to 0, set to 1, or a bit-flip at a random position are considered— results are classed in four groups

◦ crash: reference cycle count exceeded,
◦ nothing Significant To Report (NSTR)
◦ delay: illegal instruction is delayed
◦ success: DIFT has been bypassed

21/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



fault simulation campaign - main resultsFault Injection Attacks against D-RI5CY

Table: Fault simulations end status
Crash NSTR Delay Success Total

Buffer overflow 0 940 17 15 972Format string 0 1036 69 29 1134

22/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



fault simulation campaign - Buffer overflowFault Injection Attacks against D-RI5CY

Table: Buffer overflow: success per register, fault type and simulation time

137140 ns 137180 ns 137220 ns 137260 ns 137300 ns
set to 0 set to 1 set to 0 set to 1 bitflip set to 0 bitflip set to 0 bitflip set to 0

pc if o tag ✓ ✓ ✓rf reg[1] ✓ ✓tcr q ✓ ✓ ✓ ✓ ✓ ✓tpr q ✓ ✓ ✓ ✓

23/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



fault simulation campaign - format stringFault Injection Attacks against D-RI5CY

Table: Format string attack: success per register, fault type and simulation time

2099140 ns 2099180 ns 2099220 ns 2099260 ns 2099300 ns 2099340 ns 2099380 ns
set to 0 set to 1 bitflip set to 0 set to 1 set to 0 set to 1 set to 0 set to 1 set to 0 bitflip set to 0 bitflip set to 0 bitflip

alu operand b ex o tag ✓ ✓

alu operator o mode ✓ ✓ ✓

check s1 o tag ✓ ✓ ✓

store dest addr ex o tag ✓ ✓ ✓

use store ops ex o ✓ ✓ ✓

rf reg[15] ✓ ✓ ✓ ✓

tcr q ✓ ✓ ✓ ✓ ✓ ✓

tpr q ✓ ✓ ✓ ✓ ✓

24/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



Table of ContentsConclusions

▶ Introduction
▶ D-RI5CY processor
▶ Fault Injection Attacks against D-RI5CY
▶ Conclusions

25/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



• We have shown that the D-RI5CY DIFT mechanism is vulnerable to FIAs
• We identified 12 DIFT-related sensitive registers
• 72 simulated fault injections over 3726 have lead to a successful attack (1.93%)
• In future works we will

— Strengthen the proposed analysis through actual fault injection campaign targeting aFPGA implementation— Propose a robust in-core DIFT mechanism against FIAs

26/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



When in-core Dynamic InformationFlow Tracking faces fault injectionattacks
Many thanks to William Pensec for his work

Thank you for listening!
Any questions?

27/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



ReferencesConclusions

[1] Abdul Wahab, M., Cotret, P., Nasr Allah, M., Hiet, G., Lapotre, V., and Gogniat, G.Towards a hardware-assisted information flow tracking ecosystem for ARMprocessors.In 26th International Conference on Field-Programmable Logic and Applications (FPL
2016) (Lausanne, Switzerland, Aug. 2016).

[2] Dalton, M., Kannan, H., and Kozyrakis, C.Raksha: A flexible information flow architecture for software security.
SIGARCH Comput. Archit. News. 35, 2 (June 2007), 482–493.

[3] Kannan, H., Dalton, M., and Kozyrakis, C.Decoupling dynamic information flow tracking with a dedicated coprocessor.In Dependable Systems & Networks, 2009. (2009), IEEE, pp. 105–114.

28/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |



ReferencesConclusions

[4] Nagarajan, V., Kim, H.-S., Wu, Y., and Gupta, R.Dynamic information tracking on multicores.In INTERACT (Feb 2008).
[5] Palmiero, C., Di Guglielmo, G., Lavagno, L., and Carloni, L. P.Design and Implementation of a Dynamic Information Flow Tracking Architecture toSecure a RISC-V Core for IoT Applications.In High Performance Extreme Computing (2018).
[6] Traber, A., Gautsch, M., and Davide, S. P.

RI5CY: User Manual Revision 1.7.ETH Zurich, University of Bologna, 2017.

29/29 When in-core Dynamic Information Flow Tracking faces fault injection attacks |


	Introduction
	D-RI5CY processor
	Fault Injection Attacks against D-RI5CY
	Conclusions

