
--
Automating Fault Injection through CABA Simula-
tion for Vulnerability Assessment
William PENSEC, Vianney LAPÔTRE, Guy GOGNIAT
Université Bretagne Sud, UMR 6285, Lab-STICC, Lorient, France

firstname.lastname@univ-ubs.fr

Context
Internet of Things (IoT) devices have revolutionised data collection and analysis, yet their proximity raises concerns about physical attacks like fault injection attacks (FIA).

Numerous studies have highlighted critical system vulnerabilities to FIAs [1, 2]. This poster presents FISSA (Fault Injection Simulation for Security Assessment), automating

circuit design robustness evaluation against FIA through early-stage simulations using existing HDL simulators.

FISSA - Fault Injection Simulation for Security Assessment

FISSA is an open-source [3] tool based on an HDL simulator such as Questasim to

perform fault injection attack campaigns in simulation in order to assess the security

of designs during the development phase. Its main characteristics are: highly

configurable, easy to integrate, high control over fault scenarios, and multiples fault

models already implemented.

Config
file

(.json)

Targets
(.yaml)

TCL
generator

TCL
Scripts

Fault
Injection
Simulator

Memory
Init

(.mem)

HDL
files

(.sv, .v)

Log
files

(.json)
Analyser

Heatmap
(.pdf)

LATEX
Tables
(.tex)

Software architecture of FISSA

D-RI5CY
We study the D-RI5CY [4] which introduces a Dynamic Information Flow Tracking

(DIFT) mechanism to protect the processor against software attacks such as buffer

overflows, SQL injections, etc. DIFT-related elements are represented in red.

CONTROLLER

IF
/
ID

ID
/
E
X

E
X
/
W

B

PC T

E

Tag Check

Logic

E

Instruction

Memory

Instruction

Cache

Decoder

Exception

Controller

Register

File
T

E

Tag Update

Logic

E

ALU

CSR
TPR

TCR

E

MULT

DIV FPU

Tag

Propagation

Logic

E

LSU

Tag Check

Logic

E

Data

Memory
T

D-RI5CY
in-core

off-core

off-core

D-RI5CY processor architecture overview

Evaluated protection mechanism
Hamming Codes are a class of linear error-correcting codes invented by Richard W.

Hamming [5] in 1950. The main use of these codes is to detect and correct errors.

They are mostly used in digital communication and data storage systems as error

control codes. The main disadvantage is they work only for one error.

inputn−1

inputx

input1

input0

Encoder

r0

r1

. . .

rn−1

Parity bit
Redundancy bits

Decoder

a

b

c

d

m

m

d

c

b

a

errordetected

outputr0corrected

outputr1corrected

outputrxcorrected

outputrn−1corrected

outputr0corrected

outputr1corrected

outputrxcorrected

outputrn−1corrected

Proposed scheme for code-based protections of a set of independent registers

In addition of Hamming Code to correct one error and detect two errors, we decided

to implement another implementation of Hamming Code. This implementation is

named as SECDED for Single Error Correction Double Error Detection. This code use

Hamming Code and a parity bit to detect double errors.

The general parity bit "gp0" is calculated on all other bits with a XOR (⊕) operator.

d6 d5 d4 d3 d2 d1 d0r3 r2 r1 r0 gp0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

Redundancy bits General Parity

SECDED redundancy and general parity bits positions.

Experimental results
Table 1: Results for single bit-flip in two registers at a given clock cycles

Crash Silent Delay Detection Single Error Correction Double Errors Detection Success Total

Buffer overflow

No protection 0 45,097 1,503 – – – 1,406 (2.93%) 48,006
Simple Parity 0 10,551 134 40,952 – – 239 (0.46%) 51,876

Hamming Code 0 0 575 – 67,829 – 452 (0.66%) 68,856
SECDED 0 2,436 0 – 59,424 11,616 0 (0.00%) 73,476

Format string

No protection 0 55,589 5,035 – – – 3,384 (5.29%) 64,008
Simple Parity 0 13,361 450 54,590 – – 767 (1.11%) 69,168

Hamming Code 0 0 1,709 – 89,010 – 1,089 (1.19%) 91,808
SECDED 0 0 0 – 82,480 15,488 0 (0.00%) 97,968

Table 1 shows protection schemes against buffer overflow and format string vulner-

abilities. Without protection, success rates are 2.93% and 5.29%. Simple Parity and

Hamming Code reduce these significantly. SECDED is the most effective, reducing

success rates to 0%.

The results in Table 2 show that the three implementations have no impact on perfor-

mance and the area overhead is negligible (less than 8%) to allow the correction of

single errors and the detection of double errors.

Table 2: Implementation results of the three different protections

LUT FF Max Frequency

No protection 6,911 2,335 47.619 Mhz
Simple Parity 7,011 (1.45%) 2,337 (0.09%) 47,619 Mhz (0%)
Hamming Code 7,283 (5.38%) 2,361 (1.11%) 47.447 Mhz (-0.36%)
SECDED 7,428 (7.48%) 2,366 (1.33%) 47.170 Mhz (-0.95%)

Conclusion and Perspectives
In this work, we present a configurable open-source tool to automate fault injection

simulations campaigns. We illustrate FISSA thanks to a simple use case. FISSA can

be used with well-known HDL simulators such as Questasim. It generates TCL scripts

for simulation and produces JSON log files for security analysis.

In future work, we plan to support new HDL simulators, extend the fault models

supported and improve integration into the design workflow.

References
[1] S. Nashimoto et al., “Bypassing Isolated Execution on RISC-V using Side-Channel-Assisted Fault-Injection and Its Countermea-

sure,” 2021. DOI: 10.46586/tches.v2022.i1.28-68.

[2] J. Laurent et al., “Fault Injection on Hidden Registers in a RISC-V Rocket Processor and Software Countermeasures,” in Design,
Automation & Test in Europe Conference (DATE), 2019. DOI: 10.23919/DATE.2019.8715158.

[3] W. Pensec, Fault Injection Simulation for Security Assessment. [Online]. Available: https://github.com/WilliamPsc/FISSA.

[4] C. Palmiero et al., “Design and Implementation of a Dynamic Information Flow Tracking Architecture to Secure a RISC-V Core
for IoT Applications,” in High Performance Extreme Computing, 2018. DOI: 10.1109/HPEC.2018.8547578.

[5] R. W. Hamming, “Error detecting and error correcting codes,” 1950. DOI: 10.1002/j.1538-7305.1950.tb00463.x.

--


