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ABSTRACT
Internet of Things (IoT) devices manipulate sensitive data leading to

strict security needs. They face both software and physical attacks

due to their network connectivity and their proximity to attackers.

These devices are usually built around low-cost and low-power

processors. In this paper, we study the impact of Fault Injection

Attacks (FIA) on Dynamic Information Flow Tracking (DIFT) mech-

anism of the D-RI5CY processor. Our results highlight the high

sensitivity of this protection mechanism to multiple fault types at

multiple spatial and temporal locations. Out of 3318 simulations,

we achieved 74 successes (2.23%), mainly due to bit-flips.
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1 INTRODUCTION
Internet-of-Things devices are used in numerous safety-critical

domains as medical sensors, automotive, smart security systems, etc.

Given their network connectivity and physical proximity to users,

these devices are vulnerable to both software and physical attacks.

A number of studies have already explored combined software

and physical attacks [15, 11, 17, 14], with the aim of recovering

information or gaining access to a device. Dynamic Information

FlowTracking (DIFT) detects various software attacks such as buffer

overflow, SQL injections or malware by attaching and propagating

tags to data containers at runtime [5, 2]. Associated with a tag

check security policy, it raises an alert when malicious behaviour

is detected.

In this paper, we consider the in-core DIFT implemented in the

D-RI5CY processor [12]. We study the impact of Fault Injection

Attacks (FIA) on the effectiveness of the D-RI5CY DIFT mechanism.
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We perform fault injection simulations to highlight the sensitivity

of the D-RI5CY DIFT and determine the DIFT-related registers to

be protected to counter fault injection attacks.

The main contributions of this work are:

• A fault simulation campaign to identify vulnerable DIFT-

related registers in the D-RI5CY processor;

• An in-depth analysis of faults propagation along the DIFT

hardware modules.

The rest of the paper is structured as follows. Section 2 presents

related works. Section 3 introduces the D-RI5CY processor and

the considered threat model. Section 4 presents our experimental

setup for fault injection simulations and details the obtained results.

Section 5 provides an in-depth analysis of the simulation results

leading to successful attacks. Finally, Section 7 concludes the work

and draws some perspectives.

2 RELATEDWORKS
In [1], authors provide a comprehensive survey of the different

types of Information Flow Tracking (IFT) solutions from static IFT

to DIFT. They present both hardware and software IFT solutions.

Hardware DIFT solutions can be grouped into two main categories:

off-core and in-core. Off-core DIFT [6, 16, 3] relies on a dedicated

co-processor to perform tag-related operations. This approach does

not require internal processor modification and reduces the compu-

tation load on themain processor. However, the communication and

synchronization between the main processor and the co-processor

need to be carefully managed. In-core DIFT leads to internal modi-

fications of the processor. Tag-related operations are spread over

the pipeline stages and are computed in parallel with the data treat-

ments. Compared with the off-core approach, it does not require

specific communication and synchronization management. How-

ever, significant invasive changes to the processor are required. For

instance, works presented in [4] and [12] offer a flexible hardware/-

software approach relying on an in-core hardware DIFT. These

architectures allow for flexible and configurable security policies to

protect against a wide range of attacks. Despite these solutions pro-

viding an effective technique to tackle software attacks, they have

not been evaluated against physical attacks such as fault injection

attacks.

FIA can be performed by disturbing the power supply or the

clock, by using EM pulses or laser shots [7]. Many studies have

shown the vulnerabilities of critical systems against FIAs. [9] demon-

strates that it is possible to recover computed secret data using FIA

in hidden registers on the RISC-V Rocket processor. Electromagnetic

fault injection (EMFI) attack can be used to recover an AES key by

targeting the cache hierarchy and the MMU as shown in [18]. Laser
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Figure 1: D-RI5CY processor architecture overview. DIFT-
related modules are highlighted in red.

fault injections (LFI) can allow the replay of instructions [8]. [17]

shows the use of glitch injections on the power supply to control

the program counter (PC). Voltage glitches can also lead to glitch

trust-zone mechanisms as shown in [14]. Finally, authors of [11]

have shown that one can combine side-channel attacks (SCA) and

FIAs to bypass the Physical Memory Protection (PMP) mechanism

in a RISC-V processor.

To the best of our knowledge, in-core DIFT mechanisms have

not been yet evaluated against FIAs. This paper presents the first

security evaluation of a DIFT mechanism against physical attacks.

3 BACKGROUND
3.1 D-RI5CY
Figure 1 presents an overview of the D-RI5CY processor. DIFT-

related modules are highlighted in red. These modules allow to

store, propagate and check tags during the execution of a sensitive

application. Tags are stored parallel to the data they are associated

with in the Data Memory using 4 bits and in the Register File Tag
using 1 bit. The 1-bit tag associated with the PC is used to detect a

malicious PC manipulation, for example during a return-oriented

programming attack. The security policy is configured through

two Control/Status Registers (CSR) named TPR (Tag Propagation
Register) and TCR (Tag Check Register).

The Tag Update Logic module is used to initialize or update the

tag in the register file according to the tagged data. Then, when a

tag is propagated in the pipeline, the Tag Propagation Logic module

propagates tags according to the security policy defined in the TPR.

Once a tag has been propagated and its data has been sent out of

the pipeline, the Tag Check Logic modules check that it conforms

to the security policy defined in the TCR. If not, an exception is

raised.

It is worth noting that the D-RI5CY designers have chosen to

rely on the illegal instruction exception already implemented in

the original RI5CY processor to manage the DIFT exceptions. This

choice minimizes the area overhead of the proposed solution.

Table 1 shows the TPR configuration for the security policy con-

sidered in this paper. Each instruction type has a user-configurable

2-bit tag propagation policy field (except for Load/Store enablewhich
has a 3-bit tag) which is configured through a write instruction in

the CSR. The tag propagation policy determines how the instruc-

tion result tag is generated according to the instruction operand

tags. For 2-bit fields, value ‘00’ disables the tag propagation and

the output tag keeps its previous value, value ‘01’ stands for a logic

AND on the 2 operand tags, value ‘10’ stands for a logic OR on the

2 operand tags and value ‘11’ sets the output tag to zero.

The Load/Store Enable field provides a finer-granularity rule to

enable/disable the input operands before applying the propagation

rule specified in the Load/Store Mode field. This extra tag propaga-

tion policy is defined through 3 bits. These bits allow to enable the

source, source-address, and destination-address tags, respectively.

Table 2 shows the TCR configuration considered in this paper.

Each instruction type has a user-configurable 3-bit tag control

policy field (except for Execute check, Branch check and Load/Store
check which have 1, 2 and 4-bit tag control policy fields respectively)
which can be configured through the same instruction used for the

TPR. The tag control policy determines whether or not the integrity

of the system is corrupted based on the tags of the instruction’s

operands. The default 3-bit field should be read as follows: the right

bit corresponds to input operand 1, the middle bit corresponds to

input operand 2 and the left bit corresponds to the output tag of

the operation. For each bit set, the corresponding tag is checked to

determine whether an exception must be raised. The Execute check
field is used to check the integrity of the PC. The Branch check field

is used to check both inputs during branch instruction (beq, blt, . . . ).
The right bit is used for input operand 1 and the left bit is used

for input operand 2. Finally, the Load/Store check field is used to

enable/disable source or destination tags checking during a load
or store instruction. These bits enable or disable the checking of

the source tag, source address tag, destination tag and destination

address tag.

To illustrate the use of TCR and TPR registers, let’s consider

the detection of buffer overflow attacks leading to an ROP attack

by overwriting a function return address. We assume that buffer

data tags are set to 1 (i.e., untrusted) since the buffer is manipulated

by the user. To detect this kind of attack, it is necessary to ensure

the PC integrity by prohibiting the use of untrusted data for this

register (i.e., Execute Check field of TCR set to 1). Regarding tag

propagation configuration, load and store input operand tags must

be propagated to output. Thus, the TPR register Load/Store Mode
field should be set to value 10 (i.e., destination tag = source tag)

and the Load/Store Enable field must be set to 001 (i.e., Source tag

enabled).

3.2 Threat Model
We consider an attacker able to inject faults into DIFT-related reg-

isters leading to set to 0, set to 1 and bit-flips at any position of the

targeted register. Indeed, [19] shows the ability of an attacker using

techniques such as voltage/clock glitch to induce single-bit faults

due to setup/hold time violations in flip-flops. Authors demonstrate

that such attacks can be performed with a success rate beyond 90%

and a reproducibility rate of 100%.

To bypass the DIFT mechanism, the main attacker’s goal is to

prevent an exception from being raised. To reach this objective,

any DIFT-related register maintaining tag value, driving the tag

propagation or the tag update process or maintaining the security

policy configuration can be targeted.
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Table 1: Tag Propagation Register configuration

Load/Store Enable Load/Store Mode Logical Mode Comparison Mode Shift Mode Jump Mode Branch Mode Arith Mode

Bit index 17 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Policy 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0

Table 2: Tag Check Register configuration

Execute Check Load/Store Check Logical Check Comparison Check Shift Check Jump Check Branch Check Arith Check

Bit index 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Policy 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 VULNERABILITY ASSESSMENT
Circuit sensitivity against FIA can be evaluated through actual phys-

ical attacks, simulations or using formal methods approaches. Physi-

cal attacks campaign confirms the sensitivity of a circuit to a specific

technique of fault injection but it does not provide detailed informa-

tion regarding the effect of the fault on the micro-architecture since

the internal design registers cannot be monitored during the cam-

paign. Formal methods approaches such as [13] allow the analysis

of a circuit design in order to detect sensitive logic or sequential

hardware elements. However, this type of tool usually suffers from

restrictions limiting its actual usage on a processor. In particular,

the circuit structure it can analyze. Thus, in this paper, a logical

fault injection simulations campaign is performed to evaluate the

sensitivity of the DIFT mechanism against FIA. In this campaign,

we focus on both tag propagation and tag-checking computations.

Faults are injected in the Hardware Description Language (HDL)

code at cycle-accurate and bit-accurate levels. In this section, we

present our methodology for fault injection and the simulation

campaigns considering 2 use cases implemented to stimulate the

DIFT-related hardware modules.

We developed a TCL script generator for Siemens Questasim

10.6e. It considers a set of input parameters such as fault types,

target registers, target codes, the maximum number of cycles to

be simulated and an attack window (temporal window in which a

fault can be injected in each simulated clock cycle). Multiple attack

windows can be defined for a simulation campaign. A non-faulty

execution called reference, is first scheduled to provide a reference

processor state to be compared with the ones from faulty simula-

tions. We class the end status of each simulation into 4 categories: 1)

Crash: the reference cycle count is exceeded, 2) Nothing Significant

To Report (NSTR): no difference with the reference simulation, 3)

Delay: illegal instruction exception time is delayed compared with

the reference, 4) Success: the DIFT mechanism is bypassed.

Faults are injected into the 55 DIFT-related registers (a total

of 127 bits) at cycle-accurate and bit-accurate levels. This fault

injection campaign represents a total of 3318 faulted simulations

considering the 2 use cases (use case 1: 1422 simulations / use case

2: 1896 simulations). The number of simulations is computed as

follows: (𝑎𝑡𝑡𝑎𝑐𝑘𝑊 𝑖𝑛𝑑𝑜𝑤 ∗𝑛𝑢𝑚𝑏𝑒𝑟𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 ∗2)+ (𝑎𝑡𝑡𝑎𝑐𝑘𝑊 𝑖𝑛𝑑𝑜𝑤 ∗
𝑛𝑢𝑚𝑏𝑒𝑟𝐵𝑖𝑡𝑠). The multiplication by 2 is due to the "set to 0" and

"set to 1" threats, which only target the entire register. For example,

for the first use case, the attack window is 6 cycles, 55 targeted

registers and 127 bits. We then have: (6 ∗ 55 ∗ 2) + (6 ∗ 127) =

660 + 762 = 1422 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 .

To identify vulnerabilities of the D-RI5CYDIFTmechanismwhen

considering FIA, we have implemented two use cases: buffer over-
flow and format string attack relying on security policy from Ta-

bles 1 and 2. The first use case enables the DIFT protection in order

to monitor the program counter (PC). The second use case relies

on the DIFT protection to monitor load and store operations. It

is worth noting that monitoring arithmetic, logical, comparison,

shift, jump or branch operations stimulates identical DIFT-related

hardware modules. Since load and store operations also rely on the

processor arithmetic unit for address generation, the two use cases

stimulate all DIFT-related hardware modules for various security

policy configurations.

The next subsections describe these use cases and present the

results obtained from the fault injection campaign. Tables 3 and

4 present detailed results for each use case. Each table highlights

the DIFT-related registers, the fault types and the fault injection

times leading to a successful attack. A tick indicates a successful

attack for the corresponding register, fault type, and injection time.

For registers larger than one bit, a grey line highlights a register

bit sensitivity to the bit-flip fault type.

4.1 First use case: buffer overflow attack
The first use case is the exploitation of a buffer overflow leading to

a potential Return-Oriented Programming (ROP) attack
1
and the

execution of a shellcode. The attacker exploits a buffer overflow to

reach the return address (𝑟𝑎) register. Due to the DIFT mechanism,

the tag associated with the buffer data overwrites the 𝑟𝑎 register

tag. Since the buffer data is manipulated by the user, it is tagged as

untrusted (tag value = 1). When returning from the called function,

the corrupted 𝑟𝑎 register is loaded into PC via a jalr instruction.
The execution flow is hijacked and the first shellcode instruction is

fetched from the address (0x6fc). This attack reveals the behaviour

of DIFT when monitoring the PC tag.

Table 3 shows that 22 fault injections in 4 different DIFT-related

registers can lead to a successful attack despite the DIFTmechanism

(i.e., DIFT protection is bypassed). For example, it shows that a fault

injection targeting the pc_if_o_tag register can defeat the DIFT

protection if a fault is injected at cycle 3431 using a bit-flip or a set

to 0 fault type. Furthermore, Table 3 shows that 5 different cycles

can be targeted for the attack to succeed. In most cases, bit-flip
leads to a successful injection with 11 successes over 22. Faults in

tpr_q and tcr_q are successful since these registers maintain the

propagation rules and the security policy configuration (see Table 1

1
https://github.com/sld-columbia/riscv-dift/blob/master/pulpino_apps_dift/wilande

r_testbed/
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Table 3: Buffer overflow: success per register, fault type and simulation time

Cycle 3428 Cycle 3429 Cycle 3430 Cycle 3431 Cycle 3432

set0 set1 bitflip set0 set1 bitflip set0 set1 bitflip set0 set1 bitflip set0 set1 bitflip

pc_if_o_tag ✓ ✓
rf_reg[1] ✓ ✓
tcr_q ✓ ✓ ✓ ✓ ✓
tcr_q[21] ✓ ✓ ✓ ✓ ✓
tpr_q ✓ ✓ ✓ ✓
tpr_q[12] ✓ ✓
tpr_q[15] ✓ ✓

and Table 2 for more details about each bit position). Both pc_if_o_
tag and rf_reg[1] are also critical registers for this use case. Indeed,

pc_if_o_tag allows the propagation of the PC tag while rf_reg[1]
stores the tag of the return address register 𝑟𝑎.

4.2 Second use case: format string attack
The second use case is a format string attack

2
overwriting the return

address of a function to jump to a shellcode and starts its execution.

This attack exploits the printf() function from the C library. It

uses the %u and %n formats (see Chapter 12, Section 12.14.3 in [10]

for detailed information) to write the targeted address. The format

%u is used to print unsigned integer characters. The format %n is

used to store in memory the number of characters printed by the

printf() function, the argument it takes is a pointer to a signed int

value. Let’s call this value ‘a’. ‘a’ is user-defined, so it is tagged as un-
trusted for DIFT computation. The vulnerable printf statement is

printf("\%224u\%n\%35u\%n\%253u\%n\%n",1, (int*) (a-4)
,1, (int*) (a-3),1, (int*) (a-2), (int*) (a-1)). The
execution of such a printf leads to writing in memory 224 (0xe0)

at address (a-4), 259 (0x103) at address (a-3), and 512 (0x200) at ad-

dresses (a-2) and (a-1). The attacker’s objective is to overwrite the

return address with 0x3e0 to call a shellcode. In this case, security

policy prohibits the use of untrusted variables as store addresses.

Since variable ‘a’ is untrusted, the DIFT protection raises an ex-

ception when storing a value at memory address (a-4). This use
case has been chosen to activate the load/store modes of the DIFT

policy.

Table 4 shows that 52 fault injections in 10 DIFT-related registers

can lead to a successful attack. Furthermore, it shows that 8 different

cycles can be targeted for the attack to succeed. 29 successes over

52 are obtained with the bit-flip fault type. alu_operand_a_ex_o_
tag, alu_operand_b_ex_o_tag and alu_operator_o_mode registers
are critical during cycles 52477 and 52478 since they are used for

tag propagation related to the C statement (a-4). alu_operand_a_
ex_o_tag and alu_operand_b_ex_o_tag sequentially store the tag

associated to ‘a’ while alu_operator_o_mode stores the propagation
rule according to the TPR configuration (see Table 1). regfile_alu_
waddr_ex_o_tag stores the destination register index in which the

tag resulting from tag propagation should be written. check_s1_o_
tag maintains the TCR value from the decode stage to the execution

stage, it is compared to the value of the operand tag for tag checking.

rf_reg[15] stores the tag associated with the ‘a’ variable. store_dest_
addr_ex_o_tag maintains the tag of the destination address during

a store instruction in the execute stage. use_store_ops_ex_o drives a

2
https://github.com/sld-columbia/riscv-dift/tree/master/pulpino_apps_dift/wu-ftpd

multiplexer to propagate the value stored in store_dest_addr_ex_o_
tag register to the tag checking module. Finally, faults in tpr_q and

tcr_q are successful since these registers maintain the propagation

rules and the security policy configuration.

5 FAULTS PROPAGATION ANALYSIS
In this section, we present an in-depth analysis of the simulation

results leading to successful attacks. The aim is to understand why

an attack succeeds. For that purpose, we study the propagation

of the fault through both temporal and logical views. Most of the

faults targeting both TPR and TCR registers are not detailed in this

section. Indeed, these faults mainly target the DIFT configuration

and not the tag propagation and tag-checking computations. Faults

targeting these registers can be performed in any cycle prior to

their use.

5.1 First use case: buffer overflow attack
Figure 2 presents the 𝑟𝑎 register tag propagation in the context of

the first use case for a non-faulty execution. It focuses on three

clock cycles from the decoding of a jalr instruction (i.e., returning

from the called function) to the DIFT exception due to a security

policy violation. In cycle 3430, this tag is extracted from the register
file tag (i.e., from rf_reg[1]). In cycle 3431, it is propagated to the pc_
if_o_tag register. Then, in cycle 3432, it is propagated in the pc_id_
o_tag register and the first shellcode instruction is decoded. Since

𝑟𝑎 is tagged as untrusted and the security policy prohibits the use of

tagged data in PC (Execute Check bit = 1 in Table 2), an exception is

raised during the tag check process, which is performed in parallel

of the first shellcode instruction decoding.

Figure 2 illustrates the reason behind the sensitivity of registers

rf_reg[1] and pc_if_o_tag at cycles 3430, 3431 and 3432 highlighted

in Table 3. We can note that pc_id_o_tag register does not appear

in Table 3 while Figure 2 shows its role during tag propagation.

Actually, this register gets its value from pc_if_o_tag, so a fault

injection in this register only delays the exception.

To further study the propagation of the fault, Figure 3 illustrates

the logical relations between the DIFT-related registers (yellow

boxes) and control signals or processor registers (grey boxes) driv-

ing the illegal instruction exception signal (red box). This figure

does not describe the actual hardware architecture but highlights

the logic path leading to an exception raise. An attacker performing

fault injections would like to drive the exception signal to ‘0’ to

defeat the D-RI5CY DIFT solution. Figure 3 shows that a single fault

could lead to a successful injection since all logic paths are built

with AND gates. For instance, if register rf_reg[1] is set to 0, the tag

https://github.com/sld-columbia/riscv-dift/tree/master/pulpino_apps_dift/wu-ftpd
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Table 4: Format string attack: success per register, fault type and simulation time

Cycle 52477 Cycle 52478 Cycle 52479 Cycle 52480 Cycle 52481 Cycle 52482 Cycle 52483 Cycle 52484

set0 set1 bitflip set0 set1 bitflip set0 set1 bitflip set0 set1 bitflip set0 set1 bitflip set0 set1 bitflip set0 set1 bitflip set0 set1 bitflip

alu_operand_a_ex_o_tag ✓ ✓
alu_operand_b_ex_o_tag ✓ ✓
alu_operator_o_mode ✓ ✓ ✓ ✓
alu_operator_o_mode[0] ✓ ✓
alu_operator_o_mode[1] ✓ ✓
check_s1_o_tag ✓ ✓
regfile_alu_waddr_ex_o_tag[1] ✓
rf_reg[15] ✓ ✓ ✓ ✓
store_dest_addr_ex_o_tag ✓ ✓
tcr_q ✓ ✓ ✓ ✓ ✓ ✓ ✓
tcr_q[20] ✓ ✓ ✓ ✓ ✓ ✓ ✓
tpr_q ✓ ✓ ✓ ✓ ✓
tpr_q[12] ✓ ✓ ✓ ✓ ✓
tpr_q[15] ✓ ✓ ✓ ✓ ✓
use_store_ops_ex_o ✓ ✓

Cycle 3430

Decode jalr to shellcode

Register File Tag

ID stage

IF stage

Fetch : 0xc34: addi sp, sp, -128
Decode : 0xc30: jalr zero,ra,0
Execute : 0xc2c: addi sp, sp, 128
WB : 0xc28: lw s0,120(sp)

Cycle 3431

Fetch 1st instruction shellcode

IF stage

Fetch : 0x6fc: addi sp, sp, -16
Decode : 0xc30: jalr zero,x1,0
Execute :
WB : 0xc2c: addi sp, sp, 128

Cycle 3432

Fetch 2nd instruction shellcode
Decode 1st instruction shellcode

Tag Check Register

ID stage

Fetch : 0x700: sw ra,12(sp)
Decode : 0x6fc: addi sp, sp, -16
Execute :
WB :

rf reg[1]

pc if o tag

pc id o tag tcr q[21]

Exception handling

Figure 2: Tag propagation in a buffer overflow attack

will be propagated from gate 1 to gate 4. Then, gate 5 inputs are tcr_
q[21] (i.e., ‘1’) and pc_id_o_tag (i.e., ‘0’, gate 4 output). Thus, gate 5
output is driven to ‘0’, disabling the exception. From Figure 3, three

fault propagation paths can be identified: from gate 1 to gate 5 if
the fault is injected into rf_reg[1], from gate 4 to gate 5 if a fault is
injected into pc_if_o_tag and through gate 5 if a fault is injected into
either the tcr_q or pc_id_o_tag. Analysis of Figure 3 strengthens the
results presented in Table 3 where set to 0 and bit-flip fault types

lead to successful attacks. The root cause is that the propagation

paths consist entirely of AND gates.

5.2 Second use case: format string attack
Figure 4 details the tag propagation in the context of a format string

attack case for a non-faulty execution and illustrates the reason

behind the sensitivity of registers highlighted in Table 4. Figure 4 fo-

cuses on three clock cycles dedicated to the instruction sw a4,0(a5)
decoding and execution which should lead to the storage of the

value 224 at address (a-4). In cycles 52482 and 52483, sw a4,0(a5)
is decoded and the source operands tag are retrieved from the tag

register file. Particularly, the store destination address is retrieved

from rf_reg[15] and stored in register store_dest_addr_ex_o_tag. In
cycle 52484, the destination address of the store operation is com-

puted by the processor Arithmetic Logic Unit (ALU). In parallel,

alu_operator_o_mode, alu_operand_a_ex_o_tag, alu_operand_b_ex_
o_tag, store_dest_addr_ex_o_tag and check_s1_o_tag registers drives
the tag computation corresponding to the destination address. use_
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Figure 3: Logic description of the exception driving in a buffer
overflow attack

store_ops_ex_o drives a multiplexer to propagate the value stored

in alu_operand_a_ex_o_tag register to the tag checking module.

alu_operand_a_ex_o_tag and alu_operand_b_ex_o_tag sequentially

store the tag associated to ‘a’ while alu_operator_o_mode stores the
propagation rule according to the TPR configuration (see Table 1).

check_s1_o_tag maintains the TCR value from the decode stage to

the execution stage, it is compared to the value of the operand tag

for tag checking. Then, the store should be executed in the Exe-

cute stage. However, the tag associated with the store destination

address is set to 1 due to tag propagation (since it is computed

from variable ‘a’). Since the security policy prohibits the use of

data tagged as untrusted as a store instruction destination address

(Load/Store Check field of TCR = 1010), an exception is raised. use_
store_ops_ex_o, highlighted in Table 4 but not shown in Figure 4,

drives a multiplexer leading to the propagation of register store_
dest_addr_ex_o_tag.

To further study the propagation of the fault, Figure 5 illustrates

the logical relations between the DIFT-related registers (yellow
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Cycle 52482

Decode store of 0E0 in (a-4)

Tag Check Register

Register File Tag

ID stage

Fetch : 0x118c: nop
Decode : 0x1188: sw a4,0(a5)
Execute : 0x1184: lw a4,-20(a3)
WB : 0x1180: addi a3,s0,-16

Cycle 52483

Fetch : 0x118c: lw s0,44(sp)
Decode : 0x1188: sw a4,0(a5)
Execute :
WB : 0x1184: lw a4,-20(a3)

Cycle 52484

Execute store in (a-4)

EX stage

ID stage

Fetch : 0x1190: addi sp,sp,48
Decode : 0x118c: nop
Execute : 0x1188: sw a4,0(a5)
WB :

rf reg[15]

tcr q[20]

alu operand a ex o tag

store dest addr ex o tag

check s1 o tag
alu operator o mode

check s2 o tag

alu operand b ex o tag

exception o tag

Exception handling

Figure 4: Tag propagation in a format string attack

Table 5: Logical fault injection simulation campaigns results

Crash NSTR Delay Success Total

Buffer overflow 0 1380 20 22 (1.55%) 1422

WU-FTPd 0 1767 77 52 (2.74%) 1896

boxes) and control signals or processor registers (gray boxes) driv-

ing the illegal instruction exception signal (red box) for the second

use case. Figure 5 shows that a single fault could lead to a successful

injection since all logic paths are built with AND gates. For instance,

if register rf_reg[15] is set to 0, this tag value will be propagated

from gate 8 to gate 11 and to mux 12. Then, since mux 12 output

drives one gate 3 input, gate 3 output is driven to ‘0’, the exception

is disabled. From Figure 5, seven fault propagation paths can be

identified: from gate 1 to gate 3 if the fault is injected into tcr_q[20],
through gate 3 if a fault is injected into check_s1_o_tag, from gate 4
or gate 5 to gate 3 if a fault is injected into alu_operand_b_ex_o_tag
or alu_operand_a_ex_o_tag, frommux 6 to gate 3 if a fault is injected
into alu_operator_o_mode, frommux 7 to gate 3 if a fault is injected
into regfile_alu_waddr_ex_o_tag, from gate 8 to gate 3 if a fault is
injected in the tag register file (i.e., register rf_reg[15]) and from

mux 11 to gate 3 if a fault is injected in either store_dest_addr_ex_o_
tag or use_store_ops_ex_o. Analysis of Figure 5 reinforces the results
presented in Table 4 where set to 0 and bit-flip fault types lead to

successful attacks. As with the first use case, the main cause is that

the propagation paths are fully made of AND gates. As shown in

Table 4 alu_operator_o_mode register is sensitive to set to 0 and set
to 1 fault types. Indeed, this register determines the tag propagation

according to TPR. As stated in Section 3, the tag propagation is

disabled when a TPR field is set to ‘00’ and the output tag is set to

0 (i.e., trusted) when a TPR field is set to ‘11’.

6 DISCUSSION
In the previous sections, we extensively studied the behaviour of

the D-RI5CY DIFT security mechanism for two use cases firstly

in simulation and secondly through an architectural perspective

from a temporal and logical side. Table 5 shows the overall results

for each use case with regard to fault simulations’ end status. The

results show that we obtain 1.55% and 2.74% of successful fault

injections.

A total of 3318 simulations have been performed. On average,

about 2.23% of the fault injections lead to successful attacks. Among
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Figure 5: Logic description of the exception driving in a for-
mat string attack

the 74 successful injections, about 33.78% are due to set to 0 fault

type, 12.16% are due to set to 1 fault type and 54.06% are due to

a single bit-flip. Despite these cases do not lead to a DIFT bypass,

it is also interesting to highlight that 2.92% of the simulated injec-

tions delay the DIFT exception. This analysis demonstrates that the

DIFT is vulnerable to FIA and propagation of faults is facilitated by

combinatorial paths fully made of AND gates.

Finally, the proposed analysis highlights that, including the entire

tag register file, 42 DIFT-related registers can be targeted to bypass

the D-RI5CY DIFT protection. This detailed information is precious

to build efficient and lightweight countermeasures in a low-power

processor for IoT devices.

7 CONCLUSION
This work studies the vulnerability of the D-RI5CYDIFTmechanism

to fault injection attacks. A cycle-accurate bit-accurate simulated

fault injections campaign has been performed to identify sensitive

DIFT-related registers and determine specific time locations an

attacker could target. Moreover, we proposed an in-depth analysis

of the simulation results leading to successful attacks. The proposed

analysis demonstrates that the propagation of faults is facilitated

by paths fully made of AND gates.

In future work, we plan to implement countermeasures into the

D-RI5CY DIFT mechanism to counter fault injection attacks and

evaluate these countermeasures taking into account constraints

such as performance, area overhead and security. We plan to focus

on simple parity and Hamming code. We will compare these dif-

ferent lightweight protections, able to detect and/or correct faults

in terms of security, area overhead and performance. We also plan

to take into account a more complex threat model such as the

multi-fault model.
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